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Abstract
We consider the integrable XXZ model with special open boundary conditions
that renders its Hamiltonian SU(2)q symmetric, and the one-dimensional
quantum Ising model with four different boundary conditions. We show that
for each boundary condition the Ising quantum chain is given exactly by the
minimal model of integrable lattice theory LM(3, 4). This theory is obtained
as the result of the quantum group reduction of the XXZ model at anisotropy
	 = (q + q−1)/2 = √

2/2, with a number of sites that depends on the type of
imposed boundary condition.

PACS numbers: 0550, 0220, 0365, 7510

1. Introduction

Finite-width transfer matrices for four different boundary conditions on the cylinder were
defined and studied in [1, 2], where it was shown that in each specific case, these matrices,
which depend on a spectral parameter, form a commuting family and satisfy the same functional
equation, which allows the evaluation of their eigenvalues.

As shown in [10], the logarithmic derivative of the above transfer matrices computed at
the zero value of the spectral parameter is exactly the Hamiltonian of the one-dimensional
quantum Ising chain with some boundary terms. The latter are different for each type of
boundary condition of the two-dimensional model. Thus there is a direct connection between
the critical Ising model on a two-dimensional lattice and the one-dimensional quantum Ising
chain.

Based on numerical analysis on finite chains in [3, 7], it was realized that some of
the eigenenergies of the XXZ Hamiltonian with the boundary condition that renders this
Hamiltonian SU(2)q symmetric at the anisotropy 	 = (q + q−1)/2 = √

2/2 exactly coincide
with some of the eigenenergies of the quantum Ising chain. Exact correspondences among the
energies of both Hamiltonians was also observed in [11, 12], in the case of toroidal boundary
conditions.
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The notion of quantum group reduction of the integrable XXZ model with open boundary
conditions (OBC) in roots of unity was introduced in [4]. The model given as a result of
quantum group reduction is denoted by LM(p, p + 1) (p is a chain parameter) and called
the minimal model of integrable lattice theory [5]. The thermodynamic limit (N → ∞) of
LM(p, p + 1) is M(p, p + 1), the ordinary minimal model of onformal field theory (CFT)
with the Virasoro central charge c = 1 − 6/p(p + 1).

The integrability of the XXZ model with OBC manifests itself in the presence of a
commuting family of transfer matrices found by Sklyanin [8, 9]. Sklyanin’s transfer matrices
of the XXZ model after quantum group reduction also satisfy some functional equations as
shown in [5]. In the case of p = 3 these equations coincide with the functional equations
for the Ising transfer matrices. This fact supports an equivalence of LM(3, 4) and the Ising
model.

In the present paper, we show that, in fact, these two models coincide exactly for all types
of boundary conditions on the Ising lattice introduced in [2]. Namely, the following statements
are true:

1. The XXZ chain with an odd number of sites (2L + 1) after the quantum group reduction
of the configuration space is equivalent to the L-site Ising chain with mixed boundary
conditions.

2. The configuration space of the 2L-site XXZ chain after the quantum group reduction can
be decomposed into a direct sum of two subspaces with the same dimension 2L−1. These
subspaces form two different representations of the Temperley–Lieb algebra T2L−1 and
are eigensubspaces of the Casimir operator of Uq(sl(2)). We will denote by V0 and V1

the subspaces corresponding to the eigenvalues (S2)q = √
2 and (S2)q = 0, respectively.

Then the identification must be made as follows:

(a) the whole complex of eigenvalues of the Hamiltonian of the 2L-site XXZ chain
computed on vectors from V0 coincide with the spectrum of the (L − 1)-site Ising
chain with the boundary conditions (++) if L is even and the boundary conditions
(+−) if L is odd;

(b) the whole complex of eigenvalues of the Hamiltonian of the 2L-site XXZ chain
computed on vectors from V1 coincide with the spectrum of the (L − 1)-site Ising
chain with the boundary conditions (++) if L is odd and the boundary conditions
(+−) if L is even.

3. The spectrum of the L-site Ising chain with free boundary conditions coincide with the
united spectrum of the (L − 1)-sites Ising chains with the boundary conditions (++) and
(+−).

The plan of the paper is as follows. In section 2 we define the Ising model with different
cylindrical boundary conditions. In section 3, we introduce families of transfer matrices for
four types of boundary conditions according to [2] and find the connection between these
transfer matrices and Hamiltonians of the one-dimensional Ising chains. In section 4, we
consider the integrable XXZ model with special open boundary conditions. In section 5, we
then investigate two realizations of the Temperley–Lieb algebra in terms of dynamic variables
of the Ising and XXZ chains. In section 6, we identify the Ising chain and LM(3, 4). In
section 7, we formulate some questions for the future. In appendices A and B we show some
useful relations used in section 5.

2. The basic definitions

We consider two types of two-dimensional Ising lattices defined as follows [2]:
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Figure 1. The square lattices L and L′ where the Ising variables are attached. The links connecting
variables with the coupling constants J and K are also shown.

1. a finite-width square lattice rotated by 45◦ with each row having L or L − 1 faces;
2. a similar lattice except that each row has L faces.

Vertically, both lattices have columns of L′ faces. We identify the first row of faces with
the (L′ + 1)th row (the cylindrical boundary conditions). A lattice of the first type is denoted
by the symbol L and a lattice of the second type by the symbol L′ (see figure 1). Lattice L
consists of 2L and L′ of 2L + 1 zigzagging columns. Let us denote this number by N ; i.e.
N = 2L for L and N = 2L + 1 for L′. Furthermore, we take L to be fixed.

On these lattices we can define the Ising model by attaching at each lattice site a spin
variable taking the values +1 or −1. Since, in contrast with the toroidal model, the boundary
spins can take arbitrary values we can consider distinct types of boundary conditions:

• ++: we choose the lattice L and fix the spins at the left and right boundaries to be +1;
• +−: we choose the lattice L and fix the left boundary spins to be + 1 and the right boundary

spins to be −1;
• mixed boundaries: we choose the lattice L′ and fix the left boundary spins to be +1, but

place no restriction on the right boundary spins;
• free boundaries: we choose the lattice L with no restrictions on the boundary spins.

The lattices with the other possible boundary conditions, like, for example, −− or −+,
are clearly related to the above ones.

3. Transfer matrices

The set of spins in some row that are not fixed by boundary conditions are denoted by �. We
define transfer matrices as follows [2]:

1. For free boundaries:

T�,�′ =
∑
�′′

exp

(
J

L∑
j=1

σ ′′
j (σj + σ ′

j ) + K

L∑
j=1

σ ′′
j+1(σj + σ ′

j )

)
.

2. For fixed boundary conditions:

T�,�′ =
∑
�′′

exp

(
2Jσ ′′

1 + K

L−1∑
j=1

σ ′′
j (σj + σ ′

j ) + J

L−1∑
j=1

σ ′′
j+1(σj + σ ′

j ) + 2τKσ ′′
L

)

where τ = 1 or τ = −1, for the boundary conditions (++) or (+−) respectively.
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3. For mixed boundary conditions:

T�,�′ =
∑
�′′

exp

(
2Kσ ′′

1 + J

L∑
j=1

σ ′′
j (σj + σ ′

j ) + K

L∑
j=1

σ ′′
j+1(σj + σ ′

j )

)
.

Here, �, �′′ and �′ are three successive sets of spins, and we sum over �′′. Transfer
matrices are defined on the lattice L in the case of free and fixed boundary conditions and
on the lattice L′ in the case of mixed boundary conditions.

The transfer matrices defined above have a remarkable property:

T (J,K)T (J ′,K ′) = T (J ′,K ′)T (J,K)

(that is they commute with each other) if

sinh(2K) sinh(2J ) = sinh(2K ′) sinh(2J ′). (1)

We consider the critical Ising model; therefore sinh(2J ) sinh(2K) = 1. Following Baxter,
we use the parametrization

sinh(2J ) = cot(u) sinh(2K) = tan(u)

where 0 < u < π/2 is a spectral parameter.
As shown in [2], the transfer matrices T (u) satisfy the following functional equation:

T (2u)T (2u + 1
2π) = cos2(N+1)(2u) − sin2(N+1)(2u)

cos(4u)

2N(−1)L

(sin(2u)cos(2u))N
(2)

in the case of fixed boundary conditions and

T (2u)T (2u + 1
2π) = cos2(N+1)(2u) − sin2(N+1)(2u)

cos(4u)

2N+2(−1)L

(sin(2u)cos(2u))N
(3)

in the case of free and mixed boundary conditions, where N and L are introduced in section 2.
We now consider the Hamiltonian of the one-dimensional quantum Ising chain with L

sites,

HF
Ising(L) =

L−1∑
i=1

σ z
j σ

z
j+1 +

L∑
i=1

σx
j . (4)

This Hamiltonian is related to the transfer matrix T (u) of the Ising model with free
boundary conditions. Apart from a harmless constant it is obtained by the operation
T −1(0)Ṫ (0), where T −1(u) is an inverse matrix and Ṫ (u) is the derivative of the matrix
T (u) with respect to its parameter.

For other boundary conditions the logarithmic derivative at u = 0 is slightly modified
[10]:

1. for (++), we obtain the Hamiltonian of the (L − 1)-site Ising chain

H ++
Ising(L) = HF

Ising(L − 1) + σ z
1 + σ z

L−1

2. for (+−), we obtain the Hamiltonian of the (L − 1)-site Ising chain

H +−
Ising(L) = HF

Ising(L − 1) + σ z
1 − σ z

L−1

3. for mixed boundary conditions, we obtain the Hamiltonian of the L-site Ising chain

HM
Ising(L) = HF

Ising(L) + σ z
1

where HF
Ising is the Hamiltonian of the model with free boundary conditions. The proof of

this can be found in [10].
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4. Minimal models of integrable lattice theory

We consider the one-dimensional XXZ chain with free boundary conditions [3]

HXXZ =
N−1∑
n=1

[
σ +
n σ

−
n+1 + σ−

n σ +
n+1 +

q + q−1

4
σ z
nσ

z
n+1 +

q − q−1

4
(σ z

n − σ z
n+1)

]

σ±
n = 1 ⊗ · · · ⊗ σ± ⊗ · · · ⊗ 1

σ z
n = 1 ⊗ · · · ⊗ σ z ⊗ · · · ⊗ 1

σ + =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)
σ z =

(
1 0
0 −1

)
.

(5)

In the thermodynamic limit (N → ∞) this Hamiltonian is gapless for −1 � 	 =
(q+q−1)/2 � 1. The model has remarkable properties. Besides theU(1) symmetry, translated
into its commutation with the z-component of the total magnetization Sz = 1

2

∑N
i=1 σ

z
i , it was

also shown in [4] that the Hamiltonian HXXZ commutes with the quantum group Uq(sl(2))
including its generators X, Y and H , which are defined as

X =
N∑
n=1

q
1
2 (σ

z
1 +···+σ z

n−1)σ +
n q

− 1
2 (σ

z
n+1+···+σ z

N )

Y =
N∑
n=1

q
1
2 (σ

z
1 +···+σ z

n−1)σ−
n q− 1

2 (σ
z
n+1+···+σ z

N )

H =
N∑
n=1

σ z
n

2

and satisfies the relations

[H,X] = X [H, Y ] = −Y [X, Y ] = q2H − q−2H

q − q−1
. (6)

Furthermore, the densities

Hn = σ +
n σ

−
n+1 + σ−

n σ +
n+1 +

q + q−1

4
σ z
nσ

z
n+1 +

q − q−1

4
(σ z

n − σ z
n+1)

where n = 1, . . . , N − 1, also commute with the quantum group Uq(sl(2)).
Because of the quantum group symmetry the spectrum of the Hamiltonian can be classified

according to the representation theory of the algebra Uq(sl(2)).
The representation theory of Uq(sl(2)) has been studied in detail in the case where q

is not a root of unity. In this case, its representations are equivalent to those of the usual
U(sl(2)), that is, the configuration space (C2)

N
of the spin chain can be split into a direct

sum of irreducible highest-weight representations ρj (j is the highest weight), which are in
one-to-one correspondence with the ordinary sl(2) representations. For example, in the case
N = 4, where (C2)

4
can be decomposed into ρ2 + 3ρ1 + 2ρ0.

We study the case where qp+1 = −1 [4, 6]. In this case, the generators X and Y are
nilpotent:

Xp+1 = 0 Yp+1 = 0. (7)

We consequently obtain a very different picture of the representations.
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For example, if q4 = −1 and N = 4 then X4 = 0 and Y 4 = 0. The space (C2)
4

now
decomposes into the sum of one ‘bad’ eight-dimensional representation (ρ2, ρ1) of type I and
four other ‘good’ representations 2ρ1 + 2ρ0 of type II [4]. There is an isomorphism of the
type-II representations and the ordinary U(sl(2)) ones. The type-I representation can be
considered as the result of gluing two representations ρ2 and ρ1. It is indecomposable but is
not irreducible (it contains a three-dimensional invariant subspace).

In the general case withqp+1 = −1 [4, 6] the configuration space splits into the sum of ‘bad’
type-I representations with the highest weights Sz � p/2 and ‘good’ type II representations
with highest weights Sz < p/2 which are simultaneously not subspaces of some ‘bad’ ones.
The highest-weight vectors vj of the good representations can be characterized by the condition

vj ∈ Vp ≡ Ker X/ Im Xp. (8)

Because Uq(sl(2)) commutes with HXXZ , we can normally restrict its action on the space
Vp. The model resulting from this quantum group reduction model is called LM(p, p +
1) [5].

The number of representations with the highest weight j < p/2 in the decomposition of
(C2)

N
equals the number of restricted paths of length N beginning at zero and ending at j .

The restriction means that a path cannot cross the straight lines j = 0 and p/2. For example,
if p = 3 and N is odd, then only the paths ending at j = 1

2 are permissible, and the number
of paths is therefore 2N−1.

A so-called Sklyanin transfer matrix [8, 9]

T1/2(u) = (−1)N tr(e−σ z(u+η)L(u) eσ
zuLt⊗t (u))

is related to Hamiltonians of the XXZ chain. Here L(u) is a monodromy matrix

L(u) = RN(u) . . . R1(u)

and R(u) is given by the expression

(

sin(u + η) 0
0 sin(u)

) (
0 0

sin(η) 0

)
(

0 sin(η)
0 0

) (
sin(u) 0

0 sin(u + η)

)

.

The relation

HXXZ = sin(η)

2

d log T1/2(u)

du

∣∣∣∣
u=0

+
sin2(η)

2 cos(η)
− N

2
cos(η)

holds. The transfer matrices commute with each other under different values of the spectral
parameter and therefore with the Hamiltonian

[T1/2(u), T1/2(v)] = 0 [T1/2(u),HXXZ ] = 0.

As shown in [5], after the quantum group reduction, T1/2(u) satisfies the functional equation

T1/2(u)T1/2

(
u +

π

4

)
= 2−2N+1 cos2(N+1)(2u) − sin2(N+1)(2u)

cos(4u)
. (9)

Comparing equations (2) and (9), we can see that in the case of even N and fixed boundary
conditions, the matrices T1/2(u) and 21/2−2N(sin(4u))LTIsing(2u) satisfy the same functional
equation. (Here, the transfer matrix of the Ising model with fixed boundary conditions is
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denoted by TIsing(u) rather than T (u) as it was in (2).) Their eigenvalues hence coincide, and
the two matrices are therefore equivalent.

In the case of even N and free boundary conditions, the matrices T1/2(u) and
2−1/2−2N(sin(4u))LTIsing(2u) also satisfy the same functional equation. Here, TIsing(u) is the
transfer matrix of the Ising model with free boundary equations.

Similarly, in the case of odd N , that is, for mixed boundary conditions, the
matrices T1/2(u) and 21/2−2N(sin(2u))L+1(cos(2u))LTIsing(2u) satisfy the same functional
equation. Here, TIsing(u) is the transfer matrix of the Ising model with mixed boundary
conditions.

Once again, we emphasize that while in the Ising model we have L spins in the related
XXZ chain we have N = 2L spins if the boundary conditions in the Ising model are free or
fixed, and N = 2L + 1 in the case where the Ising chain has mixed boundary conditions.
This means that the dimension of T1/2, which is 2N is always bigger than the corresponding
dimension 2L of the related TIsing.

That the transfer matrices in the two models satisfy functional equations of similar form
suggests the essential identity of the models. In what follows, we establish this identity of the
XXZ and Ising models and show how it can be realized.

5. Temperley–Lieb algebra

We recall the definition of the Temperley–Lieb algebra as an algebra with the generators
ei, i = 1, . . . , n, satisfying the relations

eiei±1ei = ei e2
i = (q + q−1)ei [ei, ej ] = 0 |i − j | > 1. (10)

The Temperley–Lieb algebra with n generators is denoted by Tn. Furthermore, we assume that
q = eiπ/4.

There are realizations of the Temperley–Lieb algebra in terms of the dynamic variables
of Ising and XXZ model. Namely, it can be verified that:

1. the expressions

e2i−1 = 1√
2
(σ z

i σ
z
i+1 + 1) i = 1, . . . , L

e2i = 1√
2
(σ x

i + 1) i = 1, . . . , L − 1

give a realization of T2L−1;

2. the expressions

e1 = 1√
2
(σ z

1 + 1)

e2i = 1√
2
(σ z

i σ
z
i+1 + 1) i = 1, . . . , L

e2i−1 = 1√
2
(σ x

i + 1) i = 2, . . . , L

give a realization of T2L;
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3. the expressions

e1 = 1√
2
(σ z

1 + 1)

e2i−1 = 1√
2
(σ z

i σ
z
i+1 + 1) i = 2, . . . , L

e2i = 1√
2
(σ x

i + 1) i = 1, . . . , L − 1

e2L−1 = 1√
2
(σ z

L−1 + 1)

give a realization of T2L−1;

4. the expressions

e1 = 1√
2
(σ z

1 + 1)

e2i−1 = 1√
2
(σ z

i σ
z
i+1 + 1) i = 2, . . . , L

e2i = 1√
2
(σ x

i + 1) i = 1, . . . , L − 1

e2L−1 = 1√
2
(−σ z

L−1 + 1)

give a realization of T2L−1.

Using these expressions, we see that the Hamiltonian of the Ising model for all four boundary
conditions is

HIsing =
N−1∑
i=1

(
ei

√
2 − 1

)

where N = 2L for free and fixed boundary conditions and N = 2L + 1 for mixed boundary
conditions.

In terms of the dynamic variables of the XXZ model, the expressions

ei = −Hi +

√
2

4

where i = 1, . . . , N − 1, give a realization of TN−1, and the Hamiltonian of the N -site XXZ
chain is

HXXZ = −
N−1∑
i=1

(
ei −

√
2

4

)
.

That the Hamiltonians of XXZ and Ising models have the same form in terms of generators
of the Temperley–Lieb algebra supports the equivalence of the two models.
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6. Identification of LM (3, 4) and the Ising model

6.1. The XXZ chain with an odd number of sites and the Ising chain with mixed boundary
conditions

We consider the (2L + 1)-site XXZ chain and the L-site Ising chain with mixed boundary
conditions. The same algebra T2L corresponds to each of them.

The densities Hi of the Hamiltonian of the XXZ model commute with the quantum group
Uq(sl(2)). Therefore, the configuration space of the XXZ model after the quantum group
reduction forms a representation of the algebra T2L as it was before the reduction. This
representation, whose vectors are in one-to-one correspondence with restricted paths (just
such as in the RSOS model) of length 2L + 1 and height 2j = 1, has the dimension 2L

and is irreducible. The realization of the Temperley–Lieb algebra on the Ising configuration
space gives the same representation. The equivalence of the two models is implied these
facts and the fact that their Hamiltonians have the same form in terms of the generators of the
Temperley–Lieb algebra.

This statement can be check numerically by comparing the eigenvalues of the operator

N−1∑
i=1

ei

computed on vectors from the configuration space of LM(3, 4) and on vectors from the
configuration space of the Ising model for small L.

6.2. The XXZ chain with an even number of sites and the Ising chain with fixed boundary
conditions

We now consider the XXZ chain with N = 2L sites and the (L − 1)-site Ising chain with
fixed boundary conditions. In the previous section, it was shown that the same algebra TN−1

corresponds to each of them.
The dimension of the configuration space of each of the two Ising Hamiltonians in this

case is half the dimension of the configuration space of LM(3, 4) V3. The space V3 has
the dimension 2L and is decomposed into the sum of two subspaces. Each of them is an
eigensubspace of the Casimir operator

(S2)q = YX +

(
qH+1/2 − q−H−1/2

q − q−1

)2

−
(
q1/2 − q−1/2

q − q−1

)2

one corresponding to the eigenvalue (S2)q = 0, and the other corresponding to the eigenvalue
(S2)q = √

2. The first subspace is denoted by V0 and the second by V1. Because the Casimir
operator commutes with the algebra T2L−1, V0 and V1 form a representation of that algebra.
The dimension of each subspace is 2L−1, which is exactly the dimension of the configuration
space of each of the two Ising chains.

As shown in appendix A,

22Nq−Ne−2iNuT1/2(u → −i∞) = {
(q − q−1)

2
(S2)q + (q + q−1)

}
and since the subspaces V0 and V1 are eigensubspaces of the matrix on the right-hand side, we
can hence see that V0 and V1 are simultaneously eigensubspaces of the matrix on the left-hand
side, with eigenvalues −1 and +1, respectively.
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The densities Hi of the Hamiltonian of the XXZ model commute with the quantum
group Uq(sl(2)). Therefore, the configuration space of the XXZ model after the quantum
group reduction forms a representation of the algebra T2L as it was before the reduction.
This representation, whose vectors are in one-to-one correspondence with restricted paths of
length 2L and height 2j = 0 and 2j = 2, has the dimension 2L and can be decomposed
into the direct sum of two irreducible representations corresponding to two different heights
of paths. The dimension of each representation equals 2L−1. The equivalence of the
two models in each of the cases in question is implied by these facts and the fact that
their Hamiltonians have the same form in terms of the generators of the Temperley–Lieb
algebra.

It was shown in [2] that TIsing(−i∞) = ±2L, where the upper sign corresponds to the
boundary conditions (++) and the lower sign corresponds to the boundary conditions (+−). The
matrices 21−2N(sin(4u))LTIsing(2u) and T1/2(u) become equivalent after the quantum group
reduction. We can therefore write

T1/2(u) = 21−2N(sin(4u))LTIsing(2u)

in the u → −i∞ limit. Substituting q = eiπ/4, we obtain

1

2L
TIsing(−i∞) = (−1)L

{−√
2(S2)q + 1

}
. (11)

Because the eigenvalues of the Casimir operator equal 0 and
√

2, we can conclude that
for even L, the configuration space of the Ising chain with the boundary conditions (++)
corresponds to V0 and the configuration space of the Ising chain with the boundary conditions
(+−) corresponds to V1. For odd L, the boundary conditions (++) correspond to V1 and the
boundary conditions (+−) correspond to V0.

6.3. The XXZ chain with an even number of sites and the Ising chain with free boundary
conditions

We now consider the XXZ chain with N = 2L sites and the L-site Ising chain with free
boundary conditions. The algebra T2L−1 corresponds to each of them. The dimensions of the
configuration spaces of the Ising chain and LM(3, 4) both equal 2L.

In the case of free boundary conditions the Ising quantum chain has a Z(2) symmetry
translated by the commutation of HF

Ising with the parity operator C given by

C = σx
1 σ

x
2 · · · σx

L.

Hence, the configuration space of the Ising chain with free boundary conditions is decomposed
into the sum of two sectors, corresponding to two eigenvalues of C. These two sectors are
denoted by C+ and C−.

We show in appendix B that C is related to the limit of the transfer matrix of the L-site
Ising model with free boundary conditions by

C = 1

2L+1
TIsing(−i∞).

As with fixed boundary conditions, we can obtain the identity

C = 1

2L+1
TIsing(−i∞) = (−1)L

{−√
2(S2)q + 1

}
(12)
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from which we can see that there is a one-to-one correspondence between the sectors in the
configuration space of the Ising chain and the subspaces V0 and V1. Namely, if L is even, then
the sector C+ corresponds to V0 and the sector C− to V1. If L is odd, then C− corresponds to
V0 and C+ to V1.

We have thus proved all statements formulated in the introduction.

7. Some questions for future work

We now formulate some questions for future work, which we will try to answer in one of our
subsequent papers.

In the previous sections we have considered the critical Ising model and the homogeneous
XXZ model and proved their equivalence. It seems that our proof can be generalized to the
case of the non-critical inhomogeneous Ising model given by the Hamiltonian

HIsing(L) =
L−1∑
i=1

aiσ
z
i σ

z
i+1 +

L∑
i=1

biσ
x
i

and the inhomogeneous XXZ model given by

HXXZ(N) =
N−1∑
i=1

ciHi

where ai , bi and ci are arbitrary coefficients.
The inhomogeneous Hamiltonian XXZ commutes with the quantum groupUq(sl(2)), since

the densities Hi, i = 1, . . . , N − 1 themselves commute with it.
Furthermore, we can obtain the Hamiltonian XXZ by evaluating the logarithmic derivative

of Sklyanin’s transfer matrix but now we must use its inhomogeneous version, that is, the
monodromy matrix L equals the product of R-matrices (as it was in section 4) evaluated at
different values of the parameter u:

L(u) = RN(u − uN) · · ·R2(u − u2)R1(u − u1).

It can be found that

ci = sin η

sin2η − sin2ui

where i = 1, . . . , N − 1.
In particular, in the case

ai = −1 bi = −λ ci = λ + 1

2
+ (−1)i

λ − 1

2

both Hamiltonians have the same form in terms of the generators of the Temperley–Lieb
algebra:

HIsing(L, λ) = −
N−1∑
i=1

(
λ + 1

2
+ (−1)i

λ − 1

2

)(
ei

√
2 − 1

)

HXXZ(N, λ) = −
N−1∑
i=1

(
λ + 1

2
+ (−1)i

λ − 1

2

)(
ei −

√
2

4

)
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with the generators of the Temperley–Lieb algebra in terms of the dynamic variables of the
Ising model given by the old expressions and in terms of the dynamic variables of the XXZ
model given by

ei = − Hi

(λ + 1)/2 + (−1)i(λ − 1)/2
+
q + q−1

4
i = 1, . . . , N − 1.

Consequently, the Hamiltonians of the XXZ and the Ising models, properly normalized

H̃Ising(L, λ) = HIsing(L, λ)/
√

2 − CN

√
2/2 (13)

and

H̃XXZ(N, λ) = HXXZ(N, λ) − CN

√
2/4 (14)

with

CN =
N∑
i=1

(
λ + 1

2
+ (−1)i

λ − 1

2

)

are expressed in a similar form in terms of the generators of the Temperley–Lieb algebra. This
fact supports equivalence of the two models.

To illustrate this we exhibit in table 1 the eigenenergies of the XXZ chain with N = 5 sites
and those of the L = 2 Ising chain with mixed boundary condition, both models at λ = 2.
The eigenenergies of the XXZ chain are separated according to their z-magnetization Sz, and
the spin S of the highest weights are also shown. The energy levels forming inhomogeneous
LM(3, 4) have a superscript (+), and we see their equality with the energy levels of the
related Ising quantum chain. The level with an asterisk symbol, although having spin S = 1

2
do not belong to inhomogeneous LM(3, 4) since it is degenerated with another level with
S = 5

2 .

Table 1. Eigenenergies of the normalized Hamiltonians H̃XXZ and H̃M
Ising given by (13) and (14). The

eigenenergies of the XXZ Hamiltonian are separated into the sectors labelled by the z-magnetization
Sz. The spins S of the highest weights are also shown. The levels marked by (+) form LM(3, 4)
and coincide with those of the Ising quantum chain. The level marked by (∗) does not belong to
LM(3, 4) since it is degenerated with another level with S = 5

2 .

H̃XXZ (N = 5, λ = 2) H̃M
Ising(L = 2, λ = 2)

S Sz = ± 1
2 Sz = ± 3

2 Sz = ± 5
2

1
2 −7.338 21(+) −7.338 21
1
2 −4.888 72(+) −4.888 72
3
2 −4.516 33 −4.516 33
1
2 −3.596 56(+) −3.596 56
3
2 −3.245 57 −3.245 57
1
2 −1.147 07(+) −1.147 07
3
2 −0.997 97 −0.997 97
5
2 0 0 0
1
2 0 (*)
3
2 0.273 69 0.273 69
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Table 2. Part of the eigenenergies of the normalized Hamiltonians H̃XXZ given by (14) and the
corresponding ones of the H̃ ++

Ising and H̃ +−
Ising given by (13). The eigenenergies of the XXZ Hamiltonian

are separated into the sectors labelled by the z-magnetization Sz. The spins S of the highest weights
are also shown. The levels with the superscript (0) and (1) belongs to the sectors V0 and V1 of
LM(3, 4), respectively. The levels marked by (∗) does not belong to LM(3, 4) since they are
degenerated with others levels with S = 2.

H̃XXZ (N = 6, λ = 2) H̃ ++
Ising(L = 2, λ = 2) H̃ +−

sing(L = 2, λ = 2)

S Sz = 0 Sz = ±1 Sz = ±2

0 −8.348 40(0) −8.348 40
1 −8.074 13(1) −8.074 13(1) −8.074 13
1 −5.656 85(1) −5.656 85(1) −5.656 85
0 −5.382 59(0) −5.382 59
2 −4.670 83 −4.670 83 −4.670 83
1 −4.670 83(∗) −4.670 83(∗)
1 −4.516 91(1) −4.516 91(1) −4.516 91
0 −4.242 64(0) −4.242 64
2 −3.702 46 −3.702 46 −3.702 46
1 −3.702 46(∗) −3.702 46(∗)
0 −1.823 56(0) −1.823 56
1 −1.551 09(1) −1.551 09(1) −1.551 09

Table 3. Eigenenergies of the normalized Hamiltonians H̃XXZ and H̃ F
Ising given by (13) and (14),

respectively. The energies of the XXZ Hamiltonian are separated into the sectors labelled by the
z-magnetization Sz, and those of the Ising chain are separated according to their parity C = ±1.
The spins S of the highest weights of the XXZ Hamiltonian are also shown. The levels with the
superscript (0) and (1) belongs to the sectors V0 and V1 of LM(3, 4), respectively. The level
marked by (∗) does not belong to LM(3, 4) since it is degenerated with another level with S = 2.

H̃XXZ (N = 4, λ = 2) H̃ F
Ising(L = 2, λ = 2)

S Sz = 0 Sz = ±1 Sz = ±2 C = +1 C = −1

0 −6.451 0(0) −6.451 01
1 −4.242 64(1) −4.242 64(1) −4.242 64
1 −2.828 43(1) −2.828 43(1) −2.828 43
0 −0.620 06(0) −0.620 06
1 0(*) 0(*)
2 0 0 0

In table 2 we illustrate relations between the two models by showing the eigenspectra
of H̃ ++

Ising(L = 2, λ = 2), H̃ +−
Ising(L = 2, λ = 2) and part of the eigenspectrum of

H̃XXZ(N = 6, λ = 2). The eigenenergies of the XXZ chain are separated in the Sz sectors and
the spin S of the highest weights are also shown. The energy levels forming V0 (S = 0) and V1

(S = 1) have a superscript (0) and (1), respectively. The eigenenergies having an asterisk does
not belong to V1 since they are degenerated with the other eigenenergies with S > 1. We see
from this table that inhomogeneous LM(3, 4) is obtained by gluing together the eigenspectra
of the related Ising chains.

In table 3 we illustrate correspondences between the Ising model and inhomogeneous
LM(3, 4) by showing the eigenenergies of H̃XXZ(N = 4, λ = 2) and H̃ F

Ising(L = 2, λ = 2).
The energies of the XXZ chain are separated according to the Sz sector and those of the Ising
chain are separated according to their parity C = ±1. The corresponding spin S of the levels
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are shown and the energies forming V0 and V1 have a superscript 0 and 1, respectively. The
energy level with an asterisk does not belong to V1 since it degenerates with another energy
with S = 2. From this table the exact correspondence between inhomogeneous LM(3, 4) and
the Ising chain is clear.

Thus the relations between the two models are very similar to those for the critical
homogeneous models.
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Appendix A. The limit of Sklyanin’s transfer matrix

The limit of the monodromy matrix L(u) as u → −i∞ equals

L(u → −i∞) = (−i)N2−Nei(u+η/2)(N−1)

(
ei(u+η/2)qH (q − q−1)X0

(q − q−1)X ei(u+η/2)q−H

)

where

H =
N∑
n=1

σ z
n

2
q = eiη

X0 =
N∑
n=1

q− 1
2 (σ

z
1 +···+σ z

n−1)σ−
n q− 1

2 (σ
z
n+1+···+σ z

N ).

(A1)

We can write our transfer matrix as

T1/2(u) = (−1)N
2∑

m,n=1

q2m−3e2i(m−n)uLm,n(u)L
t
m,n(u) (A2)

Where the indices (m, n) are the indices of the elements of L(u) and Lt
m,n is an operator in

‘quantum’ space (C2)
N

given by transposition of Lm,n. We find the limit T (u → −i∞).
Using (A2), we obtain

T1/2(u → −i∞) = (−1)N2−2NqN−1e2iu(N−1)

×(q−1L1,1L
t
1,1 + qL2,2L

t
2,2 + qe2iuL2,1L

t
2,1q

−1e−2iuL1,2L
t
1,2

)
= 2−2NqN−1e2iu(N−1)

(
q−1e2iuqq2H + qe2iu(q − q−1)2XXt

+q−1e−2iu(q − q−1)
2
X0X

t
0 + qe2iuqq−2H

)
. (A3)

The last term vanishes exponentially, and we can therefore ignore it. Using Xt = Y (see the
previous section), we obtain

T1/2(u → −i∞) = 2−2NqNe2iNu
{
q−1q2H + qq−2H + (q − q−1)

2
XY

}
. (A4)

Using

XY = YX +
q2H − q−2H

q − q−1
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we obtain

T1/2(u → −i∞) = 2−2NqNe2iNu
{
(q − q−1)

2
(S2)q + (q + q−1)

}
(A5)

where (S2)q is Casimir of the algebra Uq(sl(2)):

(S2)q = YX +

(
qH+1/2 − q−H−1/2

q − q−1

)2

−
(
q1/2 − q−1/2

q − q−1

)2

.

Appendix B. The operator C and the limit of the transfer matrix of the Ising model
with free boundary conditions

We prove that

C = 1

2L+1
TIsing(−i∞)

where TIsing(u) is the transfer matrix of the Ising model.
In the case with free boundary conditions, an element of the transfer matrix equals

∑
σ ′′

exp
[
Jσ ′′

1 (σ1 + σ ′
1)
] L∏
j=1

exp
[
Kσ ′′

j (σj + σ ′
j ) + Jσ ′′

j+1(σj + σ ′
j )
]

exp
[
Kσ ′′

L+1(σL + σ ′
L)
]

= 2L+1
L∏

j=1

cosh[J (σ1 + σ ′
1)] cosh[K(σj + σ ′

j ) + J (σj + σ ′
j )] cosh[K(σL + σ ′

L)].

For u = −i∞,

cosh(2J ) = 0 cosh(2K) = 0.

Hence, if there is even one pair σj , σ ′
j such that σj = σ ′

j , then the matrix element equals zero.
We can see from this that T (−i∞) is actually proportional to the product of all σx

i (with the
coefficient of proportionality equalling 2L+1), as this product has only those elements non-zero
for which σi = −σ ′

i for all i. Hence we obtain the desired result.
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